合成抗疟药研究

Ⅱ．新抗疟药羟基喹啉的合成和分析方法研究

药学系抗疟药研究组 许德余 殷祥生 陈 毅

羟基喹啉或 1,3-双-[N^1-(7'-氯-4'-喹啉基)-喹啉基-N^1]-丙醇（2）简称 HPQ(1)，
系作者根据国外报道某些4-喹啉氨基喹啉类化合物具有高效、低毒和持久等特点(1~3)而设计合成的10种不同结构类型的(1~10)约700余种化合物中找到的一种新抗疟药(3)。
实验室和临床研究结果表明，HPQ 对间日疟和恶性疟疗效可靠，特别是它能有效地治愈RI～RⅢ级抗氯喹恶性疟患者。与氯喹相比，除上述优点外，HPQ 具有副作用轻微，制剂无苦味并具有 15～20 天的长时效等等优点，受到疟区广大群众和卫生防疫工作者的欢迎。1975 年已由全国疟疾防治研究领导小组组织鉴定并批准试产试销试用。

近年来，对 HPQ 的进一步实验和临床研究中还发现，它可以有效地治疗各种不同的心律失常（6～7）和控制疟肺病程的发展（9）。

本文总结了近年来作者提出的羟基喹啉合成路线和分析方法，并摘要叙述其主要理化性质。

羟基喹啉及其磷酸盐的合成

羟基喹啉系由喹啉酸-1,3-二氯丙醇-(2) 于 110～120 ℃反应得到 1,3-双(羟基喹啉基)-丙醇-(2)。后者再与 4-7-二氨喹啉在 95%工业乙醇中回流反应而得。其磷酸盐系碱基与四氟分子的磷酸在 15～20 倍量蒸馏水中加热溶解并经骨焦脱色，过滤，滤液放冷后析出的白色或微黄色结晶。羟基喹啉及其磷酸盐的合成路线如简示如下：

其合成步骤为：

一．1,3-双-(N,N-喹啉基)-丙醇-(2) 的制备

工业六水磷酸氢用氮盐酸量中和成盐酸磷酸氢，加热，水蒸气压蒸发至含水量 95% 的酸，搅拌下于内温 100～110 ℃加入相当于一盐酸磷酸氢 1% 的当量的 1,3-二氯丙醇-(2)，反应中放热，待反应平息后保持反应混合物于内温 120～128 ℃ 回流搅拌反应 1～1.5 小时，趁热将反应混合物倾入 95% 工业乙醇中，搅拌，放
冷，吸滤回收反应中析出的二盐酸哌嗪盐，后者用少量工业乙醇洗涤2～3次后充分吸干，合并滤液及洗液，蒸馏回收乙醇，液残趁热搅拌下倾入过量的工业品油酸中，充分搅拌中和后放置层分，弃去盐酸层，所得淡棕色稠厚状液体于外温180℃通入100℃蒸气蒸除其中残存的少量游离哌嗪，然后减压蒸馏收集沸点180～190℃/6～8毫米汞柱(未校正，下同)或205～217℃/10～14毫米汞柱的黄白色或浅黄色1,3-双(N,N-哌嗪基)-丙醇-2]，后者于真空干燥器中放冷即成纯白色固体，具引湿性，平均收率按1.3-二氯丙醇计算不小于70%，按六水哌嗪盐计算不低于80%。

成品元素分析：
1. 苦味酸盐(分子式：C₃₅H₄₀O₂₅N₁₈)
 计算值：C, 36.71；H, 3.21；N, 19.58
 实测值：C, 36.62；H, 3.20；N, 19.54
 36.67； 3.14； 19.77

2. 磷酸盐(分子式：C₂₃H₄₄N₄O₄·P₂)
 计算值：C, 21.29；H, 5.81；N, 9.03
 实测值：C, 20.80；H, 5.77；N, 8.86
 20.69； 5.65； 8.81

二. 1,3-双(7'-氯-4'-喹啉基)-哌嗪基-N₄)-丙醇-2(羟基喹啉)的制备

工业4,7-二氯喹啉与水当量的1,3-双(N,N-哌嗪基)丙醇-2]，加1.5倍重的95%工业乙醇，加热搅拌回流反应20小时以上，放冷至室温，搅拌下加入相当于二氯喹啉水当量的工业烧碱粉和95%工业乙醇的混合物(简称醇碱，下同)，充分搅匀后继续加热搅拌回流反应10小时，放冷，再加入相当于二氯喹啉水当量的醇碱，在室温下充分搅拌至冷，待中和完全，反应混合物呈淡黄色稠厚状液体时，继续加热搅拌回流0.5～1小时，放冷后置冰槽中冷压6～10小时，吸滤收集反应中析出的羟基喹啉浅黄色结晶，充分吸干并用少量工业乙醇搅洗2～3次，能用适量热水泡洗至滤液呈中性，吸干后于105℃干燥6～8小时，收率不小于80% (包括母液回收)，所得成品的熔点为178.5～179℃。反应母液可直接加入工业盐酸而得到羟基喹啉的盐酸盐，后者溶于乙醇，可加过滤分离得。此盐酸盐用碱中和即可得羟基喹啉。

羟基喹啉亦可籍三乙胺作脱酸剂，在无水乙醇中用同样的原料和反应克分子比而制得，反应时间20～30小时，收率低于上述醇碱后处理法，但操作较简便，原料成本要高得多。所得羟基喹啉成品的纯度数据是一致的。

上法所得的羟基喹啉粗品经纯苯重结晶后，熔点、元素分析、薄层分析、紫外和红外吸收光谱分析的结果与重结晶前并无改变。
成品纯度分析：
1. 元素分析：（分子式：$C_{29}H_{53}N_{6}Cl_3O$）
计算值%：
C，63.16；H，5.81；N，15.25；Cl，12.89
实测值%：
C，63.40；H，5.89；N，15.05；Cl，12.96；
63.10；5.90；15.11；13.08
2. 浸层层析：
展开剂：丙酮、氯仿、30%二甲基水溶液（比例为2:2:1）。

支持剂：硅胶G板。
显色剂：碘化铋钾试剂。如用萤光硅胶作支持剂，则可在层析灯下观察斑点萤光。

上述条件下的浸层层析结果表明：所得的羟基喹啉不存在显色（萤光）杂质（见图1）。

3. 紫外光谱分析：其饱和水溶液在紫外区无吸收。表明此盐基本不溶于水，不含水溶性的紫外区有吸收的杂质。其稀盐酸溶液在 225.5～226；239.5～240及344～349纳米（nm）处有特征吸收峰（见图2）。

4. 红外吸收光谱分析（KCl压片，图3）

5. 质谱分析：
质谱分析表明：羟基喹啉的分子量为551，与结构式所表示的完全一致（图略）。

III. 羟基喹啉磷酸盐的制备

所得羟基喹啉粗品或经重结晶后的盐基1克分子，加85% H_3PO_4 4～4.2克分子和盐基重量10～20倍的蒸馏水，加热煮沸，骨炭脱色，过滤，滤液放冷结晶，吸滤收集羟基喹啉磷酸
盐成品，于100～110℃干燥6～8小时，熔点238℃（分解），收率（不包括母液回收）80%。成品元素分析：分子式C₃₈H₆₃NO₇ClO₄·4H₃PO₄ 计算值：N: 8.91；Cl: 7.53。
实际值：N: 0.08；9.15；Cl: 7.49；7.32。
与国内外报道的同类药物喹唑的合成相比，上述方法具有操作简便，收率高和成品纯度易于控制等优点(10～11)，经中型工艺试验结果表明，本法可以方便地过渡工业生产(12)。

羟基喹唑及其磷酸盐的理化性质
羟基喹唑（1,3-双-[N⁺(1'-氯-4'-喹唑基)]-N⁺-哌嗪基）-N⁺-哌嗪基]-丙酮[2]，是一种带哌嗪喹唑的4-氨基喹唑类化合物，具有4-氨基喹唑类化合物的一般性质，并兼具哌嗪分子的某些特性。为白色或淡黄色，无臭，无味的结晶粉末。熔点178.5～179℃。易溶于氯仿，DMF，DMSO和四氢呋喃，微溶于丙酮及热乙醇中。不溶于水、丙酮和冷乙醇中。与酸及低级有机酸作用生成水溶液添盐。后者见光变红色，其高级有机酸盐难溶于水，其盐类水溶液碱化生成的盐基系一水化合物，组成不稳定，遇热易析出水分子，本品盐基水化合物易溶于乙醇中，因此用碳酸钠做脱水剂合成分盐时，成品常因溶于乙醇中而在反应中时得不到固体。其磷酸盐系白带浅黄色结晶晶，易吸水，其无水品的熔点为238℃（分解），微苦，溶于水，其1%水溶液的pH为2.8～3.8，本品的结晶及其水溶液见光极易变色，变色的速度与温度有关。

用红外及紫外吸收光谱分析均未能检出变色后的结构变化，硅胶薄层层析分析发现显色点略延长，变色后在可见区420～460纳米（nm）处有一强吸收峰。初步的定性观察表明，此吸收峰的存在与氢离子浓度有关，以在1N HC1中的吸收为最强，氢离子浓度低于或高于1N HC1，吸收均相应地减弱，我们认为，喹唑型化合物分子的此变化可能与可逆性酯体生成有关。

羟基喹唑及其磷酸盐的分析鉴定方法
一、羟基喹唑的分析鉴定

质量检查
1. 鉴别：取本品约50毫克加0.1N HCl 3毫升，加热使溶解，取1毫升加8%硫氰酸钠试液1毫升，即产生白色混浊或沉淀。另取1毫升加氯化钡试液1毫升，即发生黄色沉淀。另取1毫升加碘化钾试液1毫升即产生红棕色沉淀。

2. 干燥失重：取本品约1克，于105℃恒温干燥4小时，失重不超过1%。

3. 熔点：（按中国药典1977年版附录）178.5～179℃。

4. 紫外分光光度：取本品加0.1N HCl，制成0.005%的溶液于紫外分光光度计上测定，应在波长为225.5～226纳米（nm），239.5～240纳米（nm）及344～349纳米（nm）处出现三个吸收集（见图2）。

5. 红外光谱测定：（氯化钾压片法）应与对照品一致。（见图3）本法可供作与喹唑基的鉴别。

6. 薄层层析：取本品制成350毫克/10毫升的氯仿溶液，取具荧光的硅胶板，展开剂为氯仿：丙酮：30% 二乙胺水溶液=4：4：2，点样量为250微克或低于250微克，展开后在254nm波长紫外灯下，应不出现其他杂质点。

含量测定
精密称取本品0.1克左右，加氯仿2～3毫升，微热，使样品溶解后加氯化钙15毫升，放置30分钟，加结晶紫试剂1～2滴，以N/10高氯酸标准液滴定，以兰绿色为滴定终点。

每毫升N/10高氯酸标准液相当于本品13.78毫克。

计算式：\[\frac{F \times V \times 13.78}{W} \times 100\% = \text{本品} \]

含量百分数
\(V \)：消耗的HClO₄标准液体积；\(W \)：样品重量，测得含量应在98～100%之间。

二、羟基喹唑磷酸盐的分析鉴定

质量检查：
1. 鉴别：取本品100毫克加蒸馏水18毫升，浓氨水2毫升，析出的白色沉淀即为羟基喹啉盐基，过滤，除去此沉淀后，滤液进行磷酸盐检定（按中国药典1963版二部附录37页）。

2. pH 测定：本品的 1% 水溶液，pH 应在 2.8～3.8 之间。

3. 干燥失重：取本品 1 克于 105℃ 恒温干燥 4 小时，失重不超过 8%。

4. 熔点：（按中国药典1977版二部附录）238℃, 熔融分解。

5. 紫外分光测定：取本品加 0.1N HCl 制成 0.001% 溶液，于紫外分光光度计上测定，应在波长为225.5～232纳米（nm）处，239.5～240
nm及344～349纳米（nm）处出现三个吸收峰。

6. 薄层层析：取本品制成150毫克/10毫升的水溶液，取具荧光的硅胶板，展开剂为氯仿：丙酮：3：2混匀，展开后于254纳米（nm）波长紫外灯下，不应出现其它杂质斑点。

含量测定：
精密称取本品0.14～0.18克，加盐酸0.5～1.0毫升，使样品溶解，再加蒸馏水10毫升，
搅拌后转移至分液漏斗中，并以少量蒸馏水洗涤2～3次，每次2～3毫升，将全部洗液合并，
并分液漏斗中，加入20% NaOH溶液10毫升，氯仿20毫升，振摇5分钟放置，待分层后，分
取氯仿液。如此共用氯仿提3次，每次20毫升，
合并全部氯仿液于另一分液漏斗中，并以10～15毫升蒸馏水洗涤氯仿液，振摇5分钟放置，
于水浴上蒸馏氯仿，至剩下3～5毫升溶液时，停止蒸馏，放冷，
加入醋酸15毫升，放置30分钟后，加结晶紫指示剂1～2滴，以 N/10 高氯酸标准液滴定，
以兰绿色为滴定终点。

每毫升 N/10 高氯酸标准液相当于本品
23.58毫克。

计算式：\[
\frac{F \times V}{W} = 本品含量百分数
\]

V：消耗高氯酸液的体积；W：样品重量；

本品含量应在 98～101% 之间。

Ⅲ. 羟基喹啉磷酸盐糖衣片的紫外光电度测定。

取磷酸羟基喹啉糖衣片10片，在分析天平上称定后，按其粉碎后的细粉总量的1/20（相当于羟基喹啉盐基70～80毫克），置100毫升容量瓶中，加入0.1N HCl，使之溶解，摇匀。用0.1N HCl稀释至刻度。

将上述溶液过滤，取中段滤液10毫升，稀
释100倍，然后在波长349纳米（nm）处进行测定。

计算式：
每片所含羟基喹啉盐基量

\[
= \frac{E \times W}{605 \times \frac{D}{\text{平均片重}}} \times \frac{1}{100}
\]

E 为测得的读数，W 为所取的细粉重量。

605 系羟基喹啉的百分消光系数，需经
用羟基喹啉标准品进行对照测定，此数值仅供参考。

百分消光系数的测定：
精密称取标准样品（羟基喹啉或其磷酸盐）
50～100毫克左右，用0.1N HCl溶于100毫升容
量瓶中并以0.1N HCl稀释至刻度，将此溶液
稀释10倍后，于波长349纳米（nm）处进行测定。

\[
\frac{E \times 100}{1 \text{C} \times 349 \text{纳米（nm）}} = \frac{D}{C \times L}
\]

C——样品克数/100 毫升溶液
D——仪器上读得的光密度值
L——比色杯长度
E——消光系数

参考文献

（下转第36页）
的副作用轻重与药物纯度有关，精制品（实验室制备的）及经过酸碱或乙醇处理过的，副反应就比较轻。

总之，经过数年来在恶性疟和间日疟流行区现场验证，证明喹啉、防疟、羟基喹啉及其磷酸盐均有良好的疗效，副作用小，较之氯喹，易为群众所接受，前二种是目前比较好的口服长效防疟药物，尤在抗氯喹恶性疟普遍存在的地区，更值得推广使用。

（龚建辛 晏连伊 整理）

参考文献
7. 上海寄生虫病研究所疟疾研究室：鼠疟原虫抗氯喹株的选育。疟疾免疫专辑 84～87, 97, 全国疟疾防治研究领导组办公室，1973年5月 (内部资料)。
8. 关于海南岛乐东县抱伦地区恶性疟原虫抗氯喹简况的调查简报，疟疾防治研究简报，1975年10月15日 (内部资料)。
9. 羟基喹啉治疗40例恶性疟疗效小结，广东地区卫生三办公室，1975年10月4日 (内部资料)。

（上接第29页）
3. 许德余，殷祥生：合成抗疟药研究，I：喹啉环抗疟药合物的合成及其化学结构与抗疟作用的关系的研究。中国药学会1978年地区性药学学学术会议论文资料 (合) 第 65～67 页。
4. 龚建辛：磷酸羟基喹啉防治疟疾的效果观察。人民军医(4)3，1975。
5. 李英成等：磷酸羟基喹啉对接触氯喹恶性疟治疗效果的观察，未发表资料。
6. 第二军医大学第一附属医院内科：羟基喹啉治疗心律失常临床小结，内部资料1978。
7. 第二军医大学第一附属医院内科：羟基喹啉治疗心律失常83例的临床小结，内部资料1978。
8. 第二军医大学等：磷酸羟基喹啉治疗疟疾研究的初步报告，内部资料1979。
9. 上海市医药工业研究院等：防疟药3号技术资料1973。
11. 许德余等喹啉合成工艺研究，医药工业 2:26，1979。
12. 第二军医大学药学系抗疟药研究组：羟基喹啉及其磷酸盐的中型工艺试验总结，未发表资料1978。